
Publication details
Year: 2012
Pages: 821-832
Series: Synthese
Full citation:
, "Between proof and truth", Synthese 187 (3), 2012, pp. 821-832.


Between proof and truth
pp. 821-832
in: Sten Lindström, Erik Palmgren, Dag Westerståhl (eds), The philosophy of logical consequence and inference, Synthese 187 (3), 2012.Abstract
We consider two versions of truth as grounded in verification procedures: Dummett’s notion of proof as an effective way to establish the truth of a statement and Hintikka’s GTS notion of truth as given by the existence of a winning strategy for the game associated with a statement. Hintikka has argued that the two notions should be effective and that one should thus restrict one’s attention to recursive winning strategies. In the context of arithmetic, we show that the two notions do not coincide: on the one hand, proofs in PA do not yield recursive winning strategies for the associated game; on the other hand, there is no sound and effective proof procedure that captures recursive GTS truths. We then consider a generalized version of Game Theoretical Semantics by introducing games with backward moves. In this setting, a connection is made between proofs and recursive winning strategies. We then apply this distinction between two kinds of verificationist procedures to a recent debate about how we recognize the truth of Gödelian sentences.
Publication details
Year: 2012
Pages: 821-832
Series: Synthese
Full citation:
, "Between proof and truth", Synthese 187 (3), 2012, pp. 821-832.